中国蔬菜

多尺度融合卷积神经网络的黄瓜病害叶片图像分

 

黄瓜病害叶片中的病斑区域分割是病害检测与类型识别的关键步骤,分割效果将直接影响病害检测和识别的精度。针对传统方法对于黄瓜病害叶片图像分割精度低和泛化能力弱等问题,提出一种基于多尺度融合卷积神经网络(Multi-ScaleFusionConvolutionalNeuralNetworks,MSF-CNNs)的黄瓜病害叶片分割方法。MSF-CNNs由编码网络(EncoderNetworks,ENs)和解码网络(DecoderNetworks,DNs)两部分组成,其中ENs为一个多尺度卷积神经网络组成,用于提取病害叶片图像的多尺度信息;DNs基于九点双线性插值算法,用于恢复输入图像的尺寸和分辨率。在MSF-CNNs模型训练的过程中,使用一种渐进微调的迁移学习方法加速模型的训练,提高模型的分割精度。在复杂背景下的作物病害叶片图像数据库上进行病害叶片图像分割试验,并与现有的分割方法全卷积网络(FullyConvolutional Networks,FCNs)、Seg Net、U-Net、Dense Net进行比较。结果表明,该MSF-CNNs能够满足复杂环境下的黄瓜病害叶片图像分割需求,像素分类精度为92.38%、平均分割准确率为93.12%、平均交并比为91.36%、频率加权交并比为89.76%。与FCNs、Seg Net、U-Net、Dense Net相比较,MSF-CNNs的平均分割精度分别提高了13.00%、10.74%、10.40%、10.08%和6.40%。使用渐进学习训练方式后,训练时间缩短了0.9 h。该方法为进一步的黄瓜病害检测和识别方法研究提供了参考。